[image: image1.jpg]
AIRCRAFT DESIGN in FLY II

Tutorial Part I

J.Sabatier

APRIL 2003

Table of CONTENT
21.
Table of CONTENT

42.
What you need

42.1.
Software tools

42.2.
Documents

53.
OVERVIEW

53.1.
Process overview

73.2.
Files overview

84.
How do we start

84.1.
Choosing a plane

84.2.
Directory

84.3.
Unpod the chosen plane

94.4.
File renaming

114.5.
Check and Save the project.

125.
Modelling

125.1.
Position and scale

145.2.
Hierarchical modelling

155.3.
Animation

175.4.
Naming convention

185.5.
Object model

206.
Importing model in FLY

206.1.
Removing part names

216.2.
Generating a S3D file

216.3.
Importing the model in FLY

226.4.
Visualizing the model in FLY

236.5.
Getting part coordinates

246.6.
Partial display in FLY

257.
General data in SVH

257.1.
Parameters

267.2.
Adjusting Moment of Inertia

278.
Integrating the Landing Gear

288.1.
Global section

288.2.
Wheel sections

308.3.
Component description

318.4.
Bumper Sections

329.
MOVING SURFACE

329.1.
Adding part name

33notes

349.2.
Adding part position and parameters

3510.
Engine section

3510.1.
Jet engine

3510.2.
Turbo Prop engine

3610.3.
Prop Engine

3711.
FUEL SYSTEM

3711.1.
Understanding the Fuel system

3911.2.
The fCel object

3911.3.
The pump object

4011.4.
The valve object

4011.5.
The Tap object

4011.6.
Design tips

4212.
Logical circuits

4212.1.
The function

4212.2.
The design

4412.3.
The components

4712.4.
Conclusion

4813.
More on logic

4813.1.
Condition box

5013.2.
Monitoring box

5213.3.
Light box

5313.4.
Flasher box

5313.5.
Fuse Box

5413.6.
Bus Object

5413.7.
Standard objects

5513.8.
Advanced logic

5714.
The VLD file

5714.1.
Unit section

5714.2.
Attributes

5815.
External lights

5815.1.
Bulb object

5815.2.
Light object

5915.3.
Strobe variation

6016.
END

What you need

1.1. Software tools

You need the following tools:

· A 3D tool:

Products like 3D max, Truspace or anything alike. This tool must support 3D mesh modelling, frame animation and should export resulting file in the S3D format, the only format that FLY supports.

· An image editor:

Photoshop, Paintshop, or any other editor able to edit and modify bitmap image in various formats. The mandatory formats are TGA, indexed colour TIF, indexed colour BMP and RAW.

· A text editor:

A simple tool like WordPad will do.

1.2. Documents

This is the most important issue about making an aircraft. You need to gather all kind of document that you can grab on your intended aircraft. Unfortunately, all of them are seldom available at the same place at the same time. On the other hand, you probably won’t start with the perfect plane the first time. My advice would be to start with a modest project as a training support.

Basically, there are 3 phases in building an aircraft (see the following table). You may start your project by following the order given in the table, as this order is roughly corresponding to increasing difficulty.

Another great way is to team up with other more knowledgeable in some area, so you go faster and get the best of each member. That’s what we do at ROTW.

OVERVIEW

1.3. Process overview

The following table will give you an overview of the overall process, the documents needed, and the topics to be mastered. By following this order, you may achieve each whole phase and still have a visible result in FLY. For instance, you may build your first new plane with a only a 3D model and reuse an existing panel and flight model.

	STEP
	Documents
	Topic

	3D model
	3D view.

· Top

· Side

· Front

Photos

· Livery

· Colours

· Scheme

Plane specifications.

· Dimensions

· Nber engine

· Light position

Animated parts

· Gear

· Flaps

· Elevators

· Ailerons

· Rudder

	Build a 3D model of the plane that can be imported in FLY.

You will master the following topics

· 3D modelling with mesh editing

· 3D animation

· Building and editing textures

· Texturing a 3D model

· Editing some FLY files for animation.

During and after this step, you may show your plane in FLY. The plane will use your model and rely on an existing panel and flight model. Depending on your plane, you will have included some logic into the internal system description.

	Panel
	Good pictures of the panel.

Flight manual describing the instruments.
	During this step, you will master

· 2D texturing

· 2D animation

· More logic into the plane system

· Visual gauge connexion into the inner system

This step is not too difficult, depending on the documentation you have, but it certainly is the longest step of the project.

	Flight model
	Flight manual

Plane specifications

· Weighs

· Fuel qty

· Range

· Various speeds

Engine specifications

· Power

· RPM

· Manifold

· Graphs

· etc

Knowledge of a real pilot

is a big plus for this step.

	Adjust flight parameters until the plane react as expected.

· Wing surface and position

· Lift and drag coefficients

· Centre of gravity

· Others

Probably the most frustrating and difficult part of the process.

This process is long and iterative. One or two parameters at a time are changed, and then the plane is tried under FLY.

Good results are never achieve the first time, because compromises should be made.

	
	
	

Files overview
For reference, here is an alphabetical list of the FLY file extension with a brief description. All those files are text file and are modified with a text editor.

	File
	Description

	DATA directory

	.PNL
	Panel and visual gauge description

	WORLD directory

	AMP
	Internal systems and logic circuits. Describes all systems used by the plane.

	CAM
	Camera position for all panel views.

	CKL
	Auto start procedure description. Script for start, stop, and in flight situation.

	ELT
	External light positions

	ENG
	Engine list with animated parts and positions

	FCS
	Flight control system. Tuning for all systems that control the plane in all directions.

	GAS
	Fuel system. Describes tanks, pumps and fuel circuitry.

	LOD
	Describe 3D model to use according to distance.

	MIX
	Tuning for all input acting on control surfaces.

	NFO
	List the files used by this aircraft.

	NGN
	Engine specifications. Parameters to describe and tune the engine type.

	PIT
	List the image files used for each panel view

	PRP
	Prop specifications. Parameters to describe and tune the prop.

	PSS
	Describes the external port position used for pitots

	RDO
	List the type and the number of radio equipment used

	SFX
	Associate sound files to various stages of the aircraft behaviour.

	SIT
	Aircraft situation in the world. Auto created.

	SVH
	General info and parameters

	VLD
	Describe various load weigh and position (pilot, passenger, cargo)

	WHL
	Landing gear parameters.

	WNG
	Wing and moving surface specifications.

	
	

How do we start

Now, before launching into the 3D modelling trivia, we do a bit of organization that will save us a lot of time. For facility, we don’t start from scratch, but from an existing plane.

1.4. Choosing a plane

Depending on your plane, you have to choose an existing aircraft based on the following criteria (in that order)

	Criteria
	Description

	Category
	Airliner, General aviation, middle, aerobatic, other

	Engine
	Jet, turbo or piston. Number of engine

	Weight
	Same order of weight and power

This aircraft is now your reference plane.

1.5. Directory

Ensure you don’t have any project interfering with the new one. You have to start with a clean directory for the following FLY directories:

	Directory
	Description

	ART
	All textures should go in this directory

	DATA
	Panel description files

	MODELS
	3D models files (ACM)

	WORLD
	All plane inner system files

During project development, you will save those four directories into another area for security purpose.

1.6. Unpod the chosen plane

Once you have decided which plane you will use as a starter, unpod this plane using the file manager under FLY.

a) Launch FLY holding the CTRL key

b) Click on the FILE MANAGER button

c) Select option 2 (Extract all files from a POD)

d) Answer YES to the dialog box. A directory list is proposed

e) Select AIRCRAFT directory

f) Select your reference plane in the list

g) Click OK

h) Exit from fly

Check that the 4 directories are not empty. They should contain the files from the reference plane.

1.7. File renaming

The first thing we do is to rename the set of files to avoid any conflict with existing files.

In this example, we will use for example one of my plane (a DC3) as the new one. Obviously, you will choose your own naming depending on your plane.

Step 1:
Rename all the files in the WORLD directory according to this table.

	File
	Description

	DC3.AMP
	All inner systems of the plane

	DC3.CAM
	Define Cockpit Camera position and orientation

	DC3.CKL
	Scripts for auto start, stop and initial position

	DC3.ELT
	External light positions

	DC3.ENG
	Engine parts and position

	DC3.FCS
	Flight control tuning

	DC3.GAS
	Fuel system description

	DC3.LOD
	3D model file association

	DC3.MIX
	Input device tuning

	DC3.NFO
	Plane file components

	DC3.NGN
	Engine specifications

	DC3.PIT
	Cockpit (panel) file association

	DC3.PRP
	Propeller specification

	DC3.PSS
	PITOT subsystems

	DC3.RDO
	Radio declaration list

	DC3.SFX
	Sound file association

	DC3.SIT
	Situation description

	DC3.SVH
	General data on this plane

	DC3.VLD
	Load description and position

	DC3.WHL
	Landing gear description

	DC3.WNG
	Moving surface description

	
	

Step 2:
Open the NFO file with WordPad. Edit the following entries. Only the ‘value’ column must be changed to your specifications.

	TAG
	Value
	Description

	<make>
	Douglas DC3
	Aircraft make and model

	<_SVH>
	DC3.SVH
	The SVH file used

	<_GAS>
	DC3.GAS
	The GAS file used

	<_WNG>
	DC3.WNG
	The WNG file used

	<_AMP>
	DC3.AMP
	The AMP file used

	<_PSS>
	DC3.PSS
	The PSS file used

	<_WHL>
	DC3.WHL
	The WHL file used

	<_VLD>
	DC3.VLD
	The VLD file used

	<_PIT>
	DC3.PIT
	The PIT file used

	<_CAM>
	DC3.CAM
	The CAM file used

	<_LOD>
	DC3.LOD
	The LOD file used

	<_RDO>
	DC3.RDO
	The RDO file used

	<_ELT>
	DC3.ELT
	The ELT file used

	<_ENG>
	DC3.ENG
	The ENG file used

	<_MIX>
	DC3.MIX
	The MIX file used

	<_CKL>
	DC3.CKL
	The CKL file used

	<_FCS>
	DC3.FCS
	The FGS file used

	
	
	

	
	
	

Step 3:
Using WordPad, open the following file. Search the given tag entries and change the values

	FILE
	TAG
	Value
	Description

	AMP
	<fcsf>
	DC3.FCS
	Flight control description if there is an autopilot on the reference aircraft.

	ENG
	<ngnf>
	DC3.NGN
	Engine file specifications

	NGN
	<prpf>
	DC3.PRP
	Propeller file specifications if the reference plane has propeller

	SVH
	<sfxd>
	DC3.SFX
	Sound file

1.8. Check and Save the project.

We now have a skeleton for the new project.

a) Edit the fli.ini file in the SYSTEM directory. Ensure that you have this line
searchPodFilesFirst=0
This will tell FLY to search and load file from the ART, DATA, MODELS and WORLD first, rather than from the already podded files.

b) Check your work by launching FLY. You should be able to see the reference plane name in the first slot of the SELECT AIRCRAFT box. Off course, there is the old icon and this is still the reference aircraft, but it should run with no problem.

c) Create a directory MYPLANE and a subdirectory V01 somewhere on your disk and save all the 4 directories ART, DATA, MODELS and WORLD into the V01. Next time you will create a V02 under MYPLANE and so on, keeping current the last 3 versions of your project, so you may start back anytime if you get any problem. It is up to you to save as many time as possible. I will provide some ‘time to save’ or TTS warning along this tutorial.

Modelling

We are not going into the detail on how to model an aircraft. I have already written a tutorial on this matter that is available at www.simvol.org in the FLY –TUTORIAL section. I am assuming that either you will follow the above tutorial or that you know how to use a 3D tool.

I will rather concentrate on what is specific to FLY modelling. So here is a list of tips and rules that may be useful.

1.9. Position and scale

The main part of the plane is the body. Here are some rules to consider during the design stage:

· Place the centre of the body in the world origin in the 3D tool. By doing so, you will be able to benefit of symmetrical cloning supported by the tool. Assuming that you have designed a complex wing profile, it is easy to duplicate it and position it by symmetric cloning without extra computation.

· The centre of the body part will become the aircraft model centre in FLY. Many part are defined related to this point. Try to place this point near the assumed Centre of Gravity (CoG). For a modern plane with a forward gear, the CoG is somewhere between the 3 wheels and near the trailing edge of the wings. Although the CoG is precisely defined in the file SVH, it help visually to make the model centre to coincide with the CoG.

· Don’t try to scale the plane at the beginning. Focus on the aspect ratio only. Respect the ratio between the plane length and the total wing wide given in the specifications. Use the 3D view to help, but adjust very carefully those proportions during the early stage of the design. Meaning, don’t cut the flaps and ailerons before this ratio is adjusted. It helps to use the real metric at the beginning, but no matter what, you will have to rescale the plane at the end, because the S3D exporter has a strange behaviour sometime.

· Design your plane as it is on the ground, gear extended. Although it must be possible to start with the flight position, it is more convenient to design landing gear extended than retracted. All animations described in this document assume this initial position. If you design a tail dragger, position it horizontally and not nose up.

· Design all external lights as separated fixed part. As those parts need coordinates, it is easier that way. If not, you will have to find where they are located on the body, and you may as well spend a whole night to position a simple light.

Hierarchical modelling

FLY expects a hierarchical model as input. The root object is the aircraft body and all others parts, either fixed or animated should be children of the body object. The following figure illustrates this point. Each arrow illustrates the ‘is a child of’ relationship.

In this tutorial, we will use ‘Object’, ‘Part’ or Piece’ as equivalent terms to define basic item of a model in a 3D tool.

Animation

This above structure is important for animation. Taking for example a complex subsystem like a landing gear, a given part (object) is animated relatively to its parent object.

The wheel will rotate around its centre. But as it is related to the suspension part, the wheel will also move up and down, following the suspension piece.

The suspension is related to the leg. When the leg rotate to enter the well, the suspension part will rotate accordingly and so will the wheel.

Thus the relationship should be set in relation to animation, depending on what effect you want to achieve.

In the 3D tool, only move and rotation are used for plane modelling. To animate a complex subsystem with more than one part, you will have to proceed like this.

Build a small scenario

You have 31 frames to complete any subsystem animation. A frame is just an intermediate picture, like in a movie, except this is a 3D description.

For example, we assume that animating the landing gear of a heavy plane (like a 747) requests the following sequence:

· Big Traps open

· Gears retract

· Big Traps close

· Small traps close

We can build a small time line like this where frames are in the horizontal axis.

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1

0
	11
	12
	13
	14
	15
	1

6
	1
7
	1

8
	1

9
	2

0
	2
1
	2
2
	2

3
	2

4
	2

5
	2

6
	2

7
	2

8
	2

9
	3

0

	Big Traps are opening
	
	
	
	
	
	
	
	
	
	
	
	
	
	Big Traps are closing

	
	
	
	
	
	
	Leg is rotating to enter the wheel well
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Small trap close

This kind of time line will help to synchronize the overall animation for each landing gear.

Set the centre of each part

Part centre (also named pivot) is useful for rotation. Each 3D tool provides a mean to set the centre of any object either manually or by computation.

Animate each object

Each component is animated in the 3D tool. Usually, this is done by initially positioning the object in frame 0. Then position the ending position in the last frame. The tool is then able to compute all intermediate frames. Some of them give additional control like acceleration between extreme positions. For a plane, we can mostly use uniform transformation.

To illustrate this point, here are two examples.

Animating the left aileron:

· Position the aileron at 15° down in frame 0

· Position and animate at 0° in frame 15 (the neutral state)

· Position and animate at 15° up in frame 30

· Do the same for the right aileron, but put it 15° up in frame 0 and go to 15° down in frame 30

Notice that by explicitly defining the neutral position, you may avoid any rounding problem that the 3D tool may introduce by computation.

Animating suspension part

· Position the part in the up position at frame 0

· Position the part in the down position at frame 1.

· This is a special part in FLY that use only 2 frames for animation

Assign relationship

Work bottom up. Start animating the deepest child, link it to its parent, and then animate the parent. Work your way up to the root body part.

Naming convention

Naming part is important for two reasons.

· Part name given in your model are appearing in the inner system files. The name provides the link between the 3D model and various logics defined in the WORLD files.

· FLY attaches special meaning to certain names. You must follow those conventions for the system to provide the corresponding functionality.

Here is a table defining the conventions. The * sign must be replaced with a valid name complement you to make a unique identifier for each part. Beware that names are case sensitive in FLY.

	Name
	Description

	body
	Must be the name of the root object. The fuselage.

	All following parts are environment mapped if spelled correctly

	aileron*
	Name of aileron part

	geard*
	Name of gear trap

	elevator*
	Elevator part

	rudder*
	Rudder part

	flap*
	Flap part

	glasse*
	Any glass part

	rotormast*
	Rotor mast for hello

	thrustrev*
	Trust reverser part

	airbrake*
	Air brake part

	light*
	External light part

	Additionally, the following name will make the object transparent

	glass*
	

	light*
	

	
	

Note:
Those conventions give just a facility to set the environment mapping by default. When using other names, it is still possible to set ON/OFF the environment mapping in the KeyFrame Editor.

Transparency:

A better way to use transparency is to define a texture with an alpha channel that controls the level of transparency. An alpha channel is an extra grey layer associated to the (R,G,B) colour layers of a picture. The grey level controls the degree of transparency. This way you can have colored semi transparent glasses rather than a full transparent object that displays as no object at all in FLY.

· Define a texture in your image editor. Assign an alpha channel to it.

· Assign this texture to the transparent face of the object in the 3D tool

I recommend using clear names with a distinct mark to left and right, as it will help in the further process.

1.10. Object model

In this document, we will often refer to an object, having attributes, each attribute having a value.

Model

This is the model used in the AMP file. The concepts are very basic:

· An object is an entity that provides a basic function to the aircraft. It has a 4-character name that must be unique in the scope of the AMP file.

· Attributes are properties with a name, and this property has a value.

Not all parameters are expressed in this form. The SVH file for instance, contains a list of attributes giving general data about the aircraft. However, all the inner systems of the plane are defined in this model.

Syntax

Most of the parameters in FLY are described as a (<TAG>,VALUE) pair. In this document, we will use this generic notation, but they appear differently in the files:

· There is no (,) signs

· The VALUE is on a separate line

· It is good practice to put a comment after the <TAG> part

Example of (<TAG>,VALUE) pair

<rMas> -- Rated Mass (slugs) (= 9083lbs) --
TAG PART

282.3

VALUE PART

The VALUE item may be of different formats.

We will use the formats defined in the following table:

	Name
	Format
	Description

	Integer
	123
	A simple integer value like 123

	Real
	123.45
	A real number with a fractional part

	PartName
	A legal part name
	Must be the name of a part from the 3D model file. Remember that those names are case sensitive in FLY.

	ObjectName
	A legal Fly ObjectName
	Must be the name of an object used in AMP to describe a basic component for any inner system, mainly in AMP, GAS, and ELT files

	X,Y,Z
	Rx,Ry,Rz
	Values associated with the 3 space directions. R may be integer or real depending on the TAG. Note that those values are not necessarily in feet. They may be in any units (weigh, inertia, etc)

X is lateral axis

Y is vertical axis

Z is the deep axis

	P,H,B
	Ax,Ay,Az
	Angles associated with the 3 space directions. Often in degrees, sometime in radian.

P is the pitch (around X)

H is the heading (around Y)

B is the bank (around Z)

	Fmt1
	<bgno>

 <fmt1>

 a1 b1

 a2 b2

 etc

 <endf>

<endo>

	A table with a list of pair (a1 b1) used to compute the b value in function of the a value.

b= f(a)

FLY use linear interpolation between 2 consecutive entries from the table.

The meaning of ‘a’ and ‘b’ depend on the table.

‘a’ and ‘b’ may be integers or real numbers.

	
	
	

	
	
	

Importing model in FLY

We assume here that you have a model of some kind designed in your 3D tool.

We now proceed to import this model into FLY. We will see later how to import partial model into FLY, to check from time to time the project progress.

Before importing into FLY, we remove all part names from the file of the reference plane. This will prevent FLY from crashing, because the old names won’t be found in the new model file.

1.11. Removing part names

Tree files are involved in this process: WHL, WNG and ENG.

Open those files with a text editor and remove both the tag and the associated name below the tag.

· Some tag has no name associated with it.

· Remove all occurrences of the given pair in each file.

	File
	Tag
	Description

	ENG
	Engine component description

	
	<prtR>
	Spinner part for propeller engine

	
	<prtB>
	Blade component for propeller engine

	
	<fprt>
	Fan component for jet engine

	
	<rprt>
	Reverser component if any

	
	<cprt>
	Cowl flap component if any

	WHL
	Landing gear description

	
	<gear>
	Any gear component

	
	<shck>
	Any spring like component

	
	<tire>
	Wheel component

	
	<-trn>
	Reverse Keyframe indicator

	WNG
	Moving surfaces

	
	<part>
	Identifies a moving surface part.

	
	<nvrt>
	Reverse Keyframe indicator

	
	
	

Left any others tag and section untouched, as they don’t include part names. The value will have to be corrected later, but this is not preventing FLY to display the model.

Be careful when you edit any file in the WORLD directory, because the FLY parser is very sensitive and don’t give detailed warnings beside ‘system violation’.

Generating a S3D file

Your 3D tool should include a ‘plugin’ or a converter to export to the S3D format. TRI provides a ‘plugin’ for 3D max.

· Scale your plane into the 3D tool with the real dimension

· Export or convert in S3D format all the 31 frames of the model in the MODELS directory of FLY.

· Ensure the converter exports all the textures into the ART directory.

· Name your S3D file like DC3.S3D.

The S3D file can be read by a text editor. It should include a list of all textures used (usually in TGA or JPEG format). This list contains the full path name of each texture used by the model. For any problem, check the S3D file content to verify that the textures are correctly listed.

1.12. Importing the model in FLY

Model import is done via the KeyFrame Editor in FLY.

· Start FLY holding CTRL key all the way

· Click on KeyFrame Editor button

· Select option 3. Import S3D

· Select your model. Click OK

· Select a 1024 texture resolution.

· Use all other default value as proposed by the system

If you forgot to texture some faces, you may get a warning message that is not fatal. You may continue to work and correct the problem later.

At the completion, you should have.

· An ACM file generated into the MODELS directory

· A TIF file generated into the ART directory

Visualizing the model in FLY

After a successful import, when the ACM and TIF file are generated, the plane can be visually checked into the KeyFrame Editor.

· Activate the KeyFrame Editor. By now, you should know how.

· Select option 1. Load model

· Select your plane into the list box and click OK.

· Select option 4. Spin model

The plane is displayed into the Editor. You may examine the aircraft by using the following keys:

	KEY
	Action

	Left arrow
	Large rotation to the left

	Right arrow
	Large rotation to the right

	Up arrow
	Zoom out

	Down arrow
	Zoom in

	SHIFT-Arrow
	In place rotation

	R
	Reset the plane position at the centre when you lost it

	; and :
	Play the frames for animation

	ESC
	Quit the spin editor

Note: The plane should show tail first. When the plane show from the top, this means that your 3D tool and Fly have not the same coordinates system. Usually, the Y and Z may be inverted. When this is the case, you must go back to the 3D tool and reorient the plane by a rotation to invert the involved coordinates.

You may enter FLY directly and select your aircraft. It must be displayed on the tarmac. Of course, it may be above or deep in the ground and no part is animated, but it will give you a first glance on what you did.

Getting part coordinates

While in the spin editor, we can scan all parts and read scrap point coordinates. Scrap points are external points in the bounding virtual box enclosing a given part. We will use this functionality to adjust more parameters into the system files.

Use the following key for this exploration.

	KEY
	Action

	P
	Go to the next part

	X
	Go to the next scrap point in the current part

	
	

The first displayed part is the body. In the bottom left corner of the screen, you can see the part name with the coordinates of the current scrap point. This point is displayed as an X on the plane picture.

Coordinate are given as X,Y,Z where

· X is the lateral ordinate (span)

· Y is the height ordinate (elevation)

· Z is the longitudinal ordinate (deep)

This is not necessarily the same reference in your 3D tool.

All coordinates are given relative to the body centre, as they must appear most of the time in the system files. Unit are given in feet, with a decimal part.

Verify the scale

Before relying on coordinates, check the scale while in FLY.

· Choose the greatest size, between the wingspan and the body length.

· Find the corresponding part (P key).

· Fiddle with the X key until you find the extremity.

· Compute the related dimension (X or Y).

If you are in a good approximation (say 0.5 %) it’s OK.

Otherwise, you have to rescale your plane into the 3D model until it fit the FLY world and import it again into Fly.

Note: Compute your scaling ratio in the following way R= T/D

Where T is the target size and D is the displayed size computed in the KeyFrame Editor.

Part coordinates

Once the scale is correct, we can get the part coordinates.

Now you may take a piece of paper and fill a table, or you may go back and forth between the files and the KeyFrame Editor, in pace with the integration process. It’s up to you, but in the end, you will need the coordinates for all the parts given in this table.

	FILE
	TAG
	Description
	

	ENG
	<bPos>
	Position of thrust for each engine.

Select the centre of the fan or spinner for this definition.
	

	
	<mPos>
	Contrail origin for jet. Get the above value and add 100 feet to the Z coordinate.
	

	WHL
	<mPos>
	In each wheel section, define the ground contact point. Chose the most external point in the wheel part with the lowest position. Only 3-wheel system may be described. For a 2 or 4 wheel gear per side, use the outmost and rearest wheel coordinate.
	

	
	<mPos>
	In each Bumper section, give the position of the point that may contact the ground. Tail skid, wing tip. Put 0,0,0 if you don’t want to use it.
	

	WNG
	<bPos>
	Position for each moving surface. Compute the centre point of each moving surface. Use the opposite scrap points to get the mean ordinate.

P0(x0,y0,z0) One corner of a flap

P1(x1,y1,z1) opposite corner

Then

Xm = (x0+x1)/2

Ym = (y0+y1)/2

Zm = (z0+z1)/2

This is just an average. Fly is not too sensitive over to those values.

	

	ELT
	<_loc>
	Exact location of each external light.
	

	GAS
	<bPos>
	Location of each fuel tank. Give the estimated tank centre location.
	

	PSS
	<bPos>
	Location of each port for the pitot system. Use to compute the icing conditions.
	

	VLD
	<bPos>
	Location of each individual charge (pilot, passenger, cargo) that appear in the weigh menu.
	

	
	
	
	

1.13. Partial display in FLY

As soon as you design the body part in the 3D tool, you may export it to the Keyframe editor to have a glance at it. You may also select it in FLY and check the external appearance. Only the parts included in your model will show however without any animation, until you update the files with the part names. Otherwise, the plane will fly with the behaviour of the reference plane.

General data in SVH

Once you have designed your model, we start the integration into FLY.

As a first task, we adjust some values in the SVH file. Open the SVH with a text editor and fill the following parameters.

1.14. Parameters

	TAG
	Value
	Description

	<name>
	Plane name
	Enter the name as it must appear in the aircraft box (i.e. DC3 or Pilatus).

	<acid>
	Tail number
	Enter the plane identification. This identifier will be used by ATC.

	<make>
	Manufacturer
	Enter the plane manufacturer.

	<emas>
	A number

E(real)
	Empty mass in slug. Compute E=m*0.03107 where ‘m’ is the empty weigh in lbs. Get empty weigh from specifications.

	<mine>
	X,Y,Z
	Moment of inertia in the 3 directions. Temporarily use the values from an equivalent plane (in weigh). Those values are adjusted during the flight model stage. There is an exception that we will describe in the next section.

	<CofG>
	X,Y,Z
	Relative position of the Centre of Gravity from the body centre.

This value is adjusted during flight model stage. Set it to 0,0,0 that is, if you have set the body centre to the estimated CofG position.

	<000a>
	Real
	Compute the wing area in square feet. Use your 3D tool to compute this area or get it from the specifications or get an estimate.

	<001a>
	Real
	Enter the wingspan.

	<002a>
	Real
	Compute the estimated mean chord of the wing in feet. Mean chord is the wing longitudinal size taken at mid span.

	<saoa>
	Integer
	Stall angle of attack in degree

	<stal>
	Integer
	Stall speed in KTS

	<posG>
	Real
	Positive G limit before breaking something in upward motion

	<negG>
	Real
	Negative G limit before breaking something in downward motion

	

	Don’t worry too much with the following values as they should be used by the automatic take-off and landing system that is not implemented in FLY II.

	<CEIL>
	Integer
	Enter the cruise ceiling in feet.

	<043a>
	Integer
	Maximum cruise speed in KTS

	<044a>
	Integer
	Approach speed in KTS

	<045a>
	Integer
	Best climb in feet per minute

	<048a>
	Integer
	Never exceed speed in KTS

	
	
	

	
	
	

Note: When you don’t know a value, use one from an existing plane of the same size and weigh type. The value may be adjusted later, don’t let this behold you.

Left all other values as they are from the reference plane.

Adjusting Moment of Inertia

Those 3 values control just what they say, i.e. the resistance of the plane to changes in each direction, either on the ground or airborne.

During the very first tests under FLY, the plane may be bouncing on the ground or keep straight ahead when turning. This behaviour comes from those parameters.

When so, a coarse adjustment is needed. Just increase or decrease the current values by whole order of magnitude (multiply or divide by 10) until the problem is fixed.

Precise adjustment may be needed later, during the flight model tuning.

When you achieve this chapter, you may test the aircraft on ground and adjust the moment of inertia until you can taxi at 20 mph and turn safely at around 12 mph.

TTS: Time to save a new version.

Integrating the Landing Gear

This is the first step of integration that will give visual result at the completion. At the end, the landing gear of the visual model will operate correctly under FLY.

The landing gear is mainly described in the WHL file.

The first section is a global section giving the plane type

· Plane type

There are 3 wheel sections, one for each landing gear apparatus.

· Nose or Tail gear

· Left Gear

· Right Gear

There are more sections for the ‘bumper’ areas of the plane. Those areas are used for damage effect with ground contact

· TailSkid point

· LeftWingTip point

· RightWingTip point

In each section, you will adjust some parameters and include part name for components that need animation.

Global section

Here are the parameters for the global section in the WHL file

	TAG
	Value
	Description

	<rMas>
	Real M

	Rated full mass in slug. This is the first entry in the WHL file. Compute this value M= F*0.03107 where F is the maximum weigh (plane + fuel + cargo) in LBS. Get the F value from specifications.

	<type>
	TAIL_DRAGGER
	The plane is a Tail Dragger.

	
	SKIDS
	The plane is a float plane

	
	
	The whole (<type>, VALUE) pair is omitted when the plane is nose geared

	<stbl>
	FMT1

a,b (list)
	Speed Sensitive Steering Table, where

a: Ground speed

b: Steering coefficient

This table is optional. It can be used to adjust the ground steering behaviour of the plane at various speeds during taxiing, take-off and landing

The steering coefficient acts as a damper (when less than 1) or an amplifier (when >1) of steering capability.

	<btbl>
	FMT1

a,b (list)
	Speed Sensitive Brake Table, where

a: Ground speed

b: Brake coefficient

This table is optional. It can be used to adjust the ground braking behaviour of the plane at various speeds during taxiing, take-off and landing

The brake coefficient acts as a damper (when less than 1) or an amplifier (when >1) of braking efficiency.

	<frcn>
	E,S,C (list)
	Friction Table. Used only in float plane where

E is the environment

S surface type

C is a friction coefficient

Needed for a floatplane, only the coefficient may be adjusted. E and S are FLY defined and cannot be changed.

1.15. Wheel sections

Parameters are described according to the next table. Enter the value on a separated line, just below the tag, and type them exactly as they are. Normally, most tags should be already present in the file from the reference plane.

 The blue cells are parameters that have to be adapted for each plane.

	TAG
	Value
	Description

	<susp>
	Whel NoseWheel
	Suspension type for a nose gear plane

	
	Whel TailWheel
	Suspension type for a Tail dragger

	
	Whel Left
	Suspension type for the left side

	
	Whel Right
	Suspension type for the right side

	
	
	

	<long>
	gear_f_crsh
	Default name for the front wheel damage box.

For a tail Dragger, this (<tag>, value) pair is omitted

	
	gear_l_crsh
	Default name for the left gear damage box

	
	gear_r_crsh
	Default name for the right gear damage box

	
	
	

	<oy_N>
	
	Longitudinal damage entry.

	<perd>
	100.0
	Maintenance Period in hour .

	<powL>
	Real L

	Power limit supported by the gear before breaking.

Compute this value as L= (M*G)/60 where M is the above <rMas>, G is the estimated ground contact speed in feet/minute.

G=500 is an average value.

	<oy_T>
	
	Tire damage entry

	<perd>
	100.0
	Maintenance Period in hour.

	<ntwt>
	 fmt1 table

 a,b (list)
	Tire wearing rate versus groundspeed where

a: is the ground speed in KTAS

b: is a small wearing value.

 It is assumed that each tire is credited by 1.0 each maintenance period and decremented by those values during duty hour. Reaching 0 during duty results in a blow out. You may use the table from an equivalent plane.

	<ltwt>
	fmt1 table

 a,b (list)
	Tire wearing rate versus lateral speed where

a: is the lateral ground speed

b: a small wearing value.

Same as above. You may use the table from an equivalent plane.

	<boff>
	Real C

	A coefficient used to define a blow out friction factor. Unit is ‘I don’t known’. A value of 1.5 is commonly used.

	
	
	

	<ster>
	1 or -1
	Define a steering gear (front or tail). The value gives the direction. Change it if the plane turns in the wrong direction.

Omit this (<tag>, value) pair for non steering gear.

	<-trn>
	
	Use this tag to invert the visual animation for a turning gear. Note: This tag controls only the animation, not the plane direction.

	<brak>
	-1
	Indicates that the gear has brake capability.

	<brkF>
	Real B
	A coefficient to assign brake power to this gear.

A value of 1.0 may not be sufficient to stop some plane on ground at full power. Adjust this value until braking is OK for both take-off and landing situation.

	<mStr>
	Real A
	Maximum steer angle in degree

	<maxC>
	Real C
	Compression ratio from 0.0 to 1.0. Define the compression factor of the suspension for this gear. Indirectly control the bounciness of the plane on hard landing.

	<damR>
	Real D

D(real)
	The damping ratio from 0.0 to 1.0 or more. Define the hardness of the suspension.

	<drag>
	Real

	Drag coefficient used to add drag when the gear is deployed.

A value of 1.5 is commonly used and may be adjusted during the flight model stage.

	<tirR>
	Real
	Overall radius of the tire in feet. Set an estimate.

	<rimR>
	Real
	Inner rim radius in feet. Set an estimate.

	<time>
	Integer
	Time in second for the gear scenario to retract/deploy the whole gear apparatus (31 frames of animation). Gear components are described in the section. (See next table)

	<mPos>
	X,Y,Z
	Ground contact coordinate for this gear. Obtain this value from the Keyframe Editor.

	<dvvd>
	Integer
	Define the vertical displacement in feet of the gear suspension.

	

	<vfx_>
	T,S,E,(S,R,G,B,A)

List of
	Visual Effect section where

T: Situation type (defined by FLY)

S: Surface type (defined by FLY)

E: Visual effect corresponding to a bitmap in FLY

S: Size of the effect

R,G,B,A Colour and Alpha channels.

This part is optional and describes the visual effects associated to this gear in various situations. I don’t know the precise use of the numbers associated with some effects, nor the whole list of situations.

Omit the whole section or use as it is from another plane

1.16. Component description

The following tags define the 3D model parts that are components of the landing gear. They must appear in each gear section. Put them just before the <long> tag, albeit they may appear anywhere into each WHEL section, after the <bgno> tag.

	TAG
	Value
	Description

	<gear>
	PartName
	Include this (<tag>, value) pair for each pivoting part other than wheel and suspension. Strut, leg and trap door are candidate.

PartName is the name of the corresponding object in the 3D model file.

	<shck>
	PartName
	Include this (<tag>, value) pair for each suspension part with a springy vertical displacement.

	<tire>
	PartName
	Include this definition for wheel component

	
	
	

Note: Fly don’t seem to support more than 3 gear sections. For heavy like plane where more than one gear train is needed on each side, you may group all the parts into the same left or right section. Unpod the 747 WHL file for an example.

Use the file manager option 3 to unpod just one file from an aircraft.
After this section, you are able to test the landing gear scenario under FLY. Start the plane, take off and watch the landing gear. When possible, use the autopilot to stabilize the plane at a lower speed and play with the landing gear until you are satisfied.

TTS: Time to save a new version.

Bumper Sections

Those sections are optional. They are used during ground contact on hard landing situations.

	TAG
	Value
	Description

	<susp>
	bmpr TailSkid
	Corresponding bumper area of the plane

	
	bmpr LeftWingTip
	

	
	bmpr RightWingTip
	

	
	
	

	<mPos>
	X,Y,Z
	Contact location defined in feet from the body centre.

Use the KeyFrame Editor to get those locations

	<vfx_>
	T,S,E,(S,R,G,B,A)

List of
	Visual Effect section where

T: Situation type (defined by FLY)

S: Surface type (defined by FLY)

E: Visual effect corresponding to a bitmap in FLY

S: Size of the effect

R,G,B,A Colour and Alpha channels (mask?).

This part is optional and describes the visual effects associated to this gear in various situations. I don’t know the precise use of the numbers associated with some effects, nor the whole list of situations.

Omit the whole section or use as it is from another plane

	<bmpF>
	Integer
	Coefficient defining the reaction of the plane. I don’t know exactly the unit used and what the exact effect of those parameters

	
	
	

After this section, you may partially test the damage. However, it is a long process, so the best is to proceed ahead and notice the plane behaviour when a crash occurs.

TTS: Time to save a new version.

MOVING SURFACE

Now that you survive from the previous chapter, here is an easy one.

1.17. Adding part name

We are just adding the moving part names to the WNG file, so they will show animated in FLY.

For each moving surface, there is a corresponding section in the WNG file. All sections are listed in the following table. Part name are inserted just after the

(<chan>, value) pair.

· Remember that we removed those entries during the initial step because they were identifying part of the reference plane.

· Insert the new (<tag>,value) in the blue rows.

	TAG
	Value
	Description

	<wing>
	wing Left w/Aileron
	Identify the section associated to the left aileron

	<flap>
	
	Moving surface subsection

	<chan>
	LeftAileron
	Control channel

	<part>
	PartName
	Name of the left aileron part in the 3D model

	<trim>
	
	Trim subsection.

	<chan>
	LeftAileronTrim
	Control channel

	<part>
	PartName
	Name of the left aileron trim in the 3D model

	

	<wing>
	wing Right w/Aileron
	Identify the section associated to the Right aileron

	<flap>
	
	Moving surface subsection

	<chan>
	RightAileron
	Control channel

	<part>
	PartName
	Name of the right aileron part in the 3D model

	<trim>
	
	Trim subsection

	<chan>
	RightAileronTrim
	Control channel

	<part>
	PartName
	Name of the right aileron trim in the 3D model

	

	<wing>
	wing Left w/Flap
	Identify the section associated to the left flap

	<flap>
	
	Moving surface subsection

	<chan>
	Flap
	Control channel

	<part>
	PartName
	Name of the left flap part in the 3D model

	<splr>
	
	Spoiler subsection

	<chan>
	Spoiler
	Control channel

	<part>
	PartName
	Name of the left spoiler in the 3D model

	<wing>
	wing Right w/Flap
	Identify the section associated to the right flap

	<flap>
	
	Moving surface subsection

	<chan>
	Flap
	Control channel

	<part>
	PartName
	Name of the right flap part in the 3D model

	<splr>
	
	Spoiler subsection

	<chan>
	Spoiler
	Control channel

	<part>
	PartName
	Name of the right spoiler in the 3D model

	
	
	

	<wing>
	wing Tail w/Rudder
	Identify the section associated to the rudder

	<flap>
	
	Moving surface subsection

	<chan>
	Rudder
	Control channel

	<part>
	PartName
	Name of the rudder part in the 3D model

	<trim>
	
	Trim subsection

	<chan>
	RudderTrim
	Control channel

	<part>
	PartName
	Name of the rudder trim in the 3D model

	
	
	

	<wing>
	wing Stabilizer w/Elevator
	Identify the section associated to the stabilizer

	<flap>
	
	Moving surface subsection

	<chan>
	Elevator
	Control channel

	<part>
	PartName
	Name of the elevator part in the 3D model

	<trim>
	
	Trim subsection

	<chan>
	ElevatorTrim
	Control channel

	<part>
	PartName
	Name of the elevator trim in the 3D model

	
	
	

	
	
	

notes

· When a component has more than one part (like a flap in a heavy), insert as many (<part>, PartName) as there are objects in the 3D model, corresponding to this component.

· When a component is missing (like spoiler), you may delete the whole subsection from the file.

· After testing, if the animation of an elementary item is reversed, insert a <nvrt> tag without value, on a separated line after the corresponding (<part>, PartName) pair.

After entering the part names for moving surface, you are able to check all controls under FLY and optionally correct any inversion or defect.

TTS: Time to save a new version.

1.18. Adding part position and parameters

For each moving surface, estimate the position of the surface, relative to the body centre. Adjust the value for each <bPos> tag.

	Tag
	Value
	Description
	

	<bPos>
	X,Y,Z
	Position for each moving surface. Compute the centre point of each moving surface. Use the opposite scrap points to get the mean ordinate.

P0(x0,y0,z0) One corner of a flap

P1(x1,y1,z1) opposite corner

Then

Xm = (x0+x1)/2

Ym = (y0+y1)/2

Zm = (z0+z1)/2

This is just an average. Fly is not too sensitive over to those values.

	

	<area>
	Real S
	Using the 3D tool or other mean, compute an estimation of the surface area in square feet.
	

	
	Real W
	Give an estimate of the surface span in feet
	

	<bAng>
	P,H,B
	Give an estimate of the surface angle at rest, in degrees.

P: Pitch (around X)

H: Heading (around Y)

B: Bank (around Z)

If you don't know, set 0 to all and adjust those values during Flight model stage.

	

Left all other values unchanged as they pertain to the flight model.

No quick relevant tests exist. All values may be corrected during the flight model tuning stage.

TTS: Time to save a new version.

Engine section

In this chapter we add the parts and adjust parameters related to the engine(s).

Engine parts and parameters are described in the ENG file.

Each engine is described in a <engn> section. The name given in this section is just for documentation purpose. In the AMP file, engines are identified by a

(<eNum>,k) pair. The k integer corresponds to the order of description in the ENG file, starting from 1.

1.19. Jet engine

	TAG
	Value
	Description

	<engn>
	Tfan En
	Identify an engine section using a Tfan (turbo fan) engine model

	<ngnf>
	FileName.NGN
	Define the file where the engine model is described. Use an existing file that will be tuned.

	<bPos>
	X,Y,Z
	Define the centre of thrust for this engine, in feet from the body centre. Use the KeyFrame Editor and pick up the fan center.

	<mPos>
	X,Y,Z
	Contrail position for this engine. Get the previous value and subtract 100 feet to the Z direction.

	<fprt>
	PartName
	Name of the fan part in the 3D model (optional)

	<rprt>
	PartName
	Name of a reverser part in the 3D model. Optional. When several parts are needed for the reverser, duplicate this (<rprt>,PartName) pair.

	<cprt>
	PartName
	Name of a cowl flap part in the 3D model. Optional. When several parts are needed for the cowl flap, duplicate this (<cprt>,PartName) pair.

1.20. Turbo Prop engine

	TAG
	Value
	Description

	<engn>
	Tprp En
	Identify an engine section using a Tprp (turbo prop) engine model

	<ngnf>
	FileName.NGN
	Define the file where the engine model is described. Use an existing file that will be tuned.

	<spin>
	-1
	Optional Tag for reversing the prop rotation

	<prop>
	
	Propeller subsection

	<prtR>
	PartName
	Name of the spinning cone in the 3D model

	<prtB>
	PartName
	Name of a blade in the 3D model. Add as many (<prtB>PartName) as necessary

	<revR>
	
	Optional tag to reverse the spinner animation

	<revB>
	
	Optional tag to reverse blade animation

	<bPos>
	X,Y,Z
	Same as above

	<mPos>
	X,Y,Z
	Same as above

	<cprt
	PartName
	Same as above

Prop Engine

	TAG
	Value
	Description

	<engn>
	engP En
	Identify an engine section using a engP (prop) engine model

	<ngnf>
	FileName.NGN
	Define the file where the engine model is described. Use an existing file that will be tuned.

	All other (<tag>,value) pairs as in the Turbo Prop model above

Notes

· Tuning the engine performances is done during the flight model adjustment process.

· At this chapter completion, you are able to check all animations related to engine(s).

After completing the ENG section, you are able to check all engine animated parts under FLY. Check also the contrail by using the slew mode and go up to 33 000 feets.

TTS: Time to save a new version.

FUEL SYSTEM

We are now moving on a design ground inside the inner system.

The fuel system describes the various tanks and pipe interconnection up to the engine.

This system should be adapted (sometime redesigned) for a better modelling.

When modifying the fuel subsystem, consider the following impacts

· Fuel system is interconnected with some components in the AMP file (at least the LP valves).

· Fuel system is controlled through some panel file(s) (PNL).

· Fuel system impacts the CKL file were auto procedures are described

1.21. Understanding the Fuel system

Before modifying anything, we look at the GAS file of the standard HAWKER to understand how it works.

Perusing the GAS file, we find the following <tag> that we interpret as real objects

	TAG
	Value
	Description

	<fCel>
	
	A fuel tank

	<fPmp>
	
	A fuel pump

	<fSub>
	
	A valve

	<fTap>
	
	A fuel tap

Each object has the following common attributes

	TAG
	Value
	Description

	<unId>
	Name
	Unique identifier (max 4 char)

	<pipe>
	FuelSource
	A connection to a fuel source. More than one <pipe> attribute is allowed to build complex interconnection. The source is the name of one of the other fuel objects (tank, valve or pump)

Before going to the specific attributes of each fuel object, we can draw the fuel subsystem defined for the Hawker. This subsystem illustrates all the features needed to design any other scheme.

On the figure, the arrows are representing the ‘is connected to’ relationship defined by the <pipe> attribute(s). Thus the fuel flow is exactly in the reverse direction.

Comments

Taking engine 1, we see that it is fed from the ‘tap1’ valve. This Tap valve is used in the AMP file to get fuel pressure and other indications.

Tap1 feeds from valve Llpc. The L_LP switch in AMP controls this valve and the LP#1 visual gauge in the floor panel drives this switch. Closing LP#1 valve cuts engine 1 from any fuel supply.

The Llpc valve takes input from the engine pump pmp1.

The pump can take fuel from the left tank (through ‘Lbst’ pump) or from the right tank (through ‘L2Rn’ valve). Switches in the AMP file control the ‘Rcfv’ and ‘Lcfv’ valves for cross feed mode. A visual gauge in the front PNL file again drives those switches.

Valves ‘R2Lv’ and ‘L2Rv’ when active would allow for fuel transfer between left and right tanks. They are not actually used in the Hawker implementation.

Valves ‘Rvtv’ and ‘Lvtv’ allow for ventral tank to feed both left and right tanks. A switch in the AMP file controls them. A visual gauge in the front PNL file drives this switch, when auxiliary tank is activated.

This example illustrate the following features

· Cross feeding

· Tank transfer

· Auxiliary tank usage

With the above 4 fuel objects, any complex fuel system may be designed.

1.22. The fCel object

	TAG
	Value
	Description

	<fCel>
	
	A fuel tank

	<unId>
	ObjectName
	A 4 char name that uniquely identify this tank

	<name>
	Left tank
	Text as it appears in the fuel menu

	<cap_>
	Integer
	Maximum capacity in gallons

	<qty_>
	Integer
	Initial fuel quantity

	<bPos>
	X,Y,Z
	Location of tank centre in feet from the body centre.

	<stFF>
	Integer
	Transfer flow in gallon/second

	<xfer>
	
	Enable forced transfer

	<xrFF>
	Integer
	Transfer fuel flow in gallons/second

	<pipe>
	ObjectName
	A fuel source object to which this tank is connected. More than one connection is allowed.

1.23. The pump object

	TAG
	Value
	Description

	<fsub>
	fPmp
	A fuel pump object

	<unId>
	ObjectName
	A 4 char name that uniquely identify this pump

	<setP>
	Integer
	Pump pressure in PSI

	<pass>
	
	This tag enables the fuel bypass when the pump is off.

	<pipe>
	ObjectName
	A fuel source object to which this pump is connected. More than one connection is allowed.

	
	
	

1.24. The valve object

	TAG
	Value
	Description

	<fsub>
	fSub
	A fuel valve object

	<unId>
	ObjectName
	A 4 char name that uniquely identify this valve

	<mPol>
	A polling message
	This message establishes a logical connection with a switch in the AMP file. The valve state will be the same as the switch referenced in the message. Controlling the switch will control this valve.

	<pipe>
	ObjectName
	A fuel source object to which this pump is connected. More than one connection is allowed.

	
	
	

1.25. The Tap object

	TAG
	Value
	Description

	<fsub>
	fTap
	A fuel tap object

	<unId>
	ObjectName
	A 4 char name that uniquely identify this valve

	<stFF>
	Integer
	Initial fuel flow in gallon/second

	<eNum>
	Integer
	Engine number controlled by this tap

	<pipe>
	ObjectName
	A fuel source object to which this tap is connected. More than one connection is allowed.

	
	
	

1.26. Design tips

When designing the fuel system of your aircraft, consider following those steps:

· Draw the system, as above, showing the tanks, the pumps, the valves and the circuits, up to the engine(s). Put arrows on the circuits to show either the connection (like above) or the fuel flow, as you prefer.

· Identify all valves you need to control the functions you want to support:
Cut fuel at engine, cut fuel at tank source, tank selector, cross-feed, internal tank transfer, etc. The main purpose of a valve is to open or close the fuel flow. A tap is a valve dedicated to an engine.

· For each valve, you must have a switch dedicated to this valve into the AMP file. More often, a logical system is needed in the AMP file to control a set of valve. Logical system will be described in the next chapter.

· Pumps are also controlled by a switch in the AMP file. Main purpose of a pump is to dimension the fuel flow, although, the FLY implementation is not very affected by the behaviour of a pump.

· The switch controlling the valves (or a function like cross-feed) are activated through a visual gauge described in a PNL file. To test the GAS implementation, place a visual temporary switch outside the panel layout and connect it to the AMP switch.

To summarize

Logical circuits

We now are going to design some logical circuit as an illustration of what can be achieved to implement various functions. Rather than launching in an exhaustive description of all FLY objects, a detailed example will give you a better understanding of this area.

1.27. The function

Here is the function we want to build.

We want a fuel selector to control the fuel distribution over the 5 tanks to the engine.

When on Tup (Tlp) position, only Tu1 (Tl1) and Tu2(Tl2) are active. Tm can be activated alone. Off position cut all fuel flow.

1.28. The design

First, here is the GAS file implementation (with my conventions, remember that the fuel flow is inverted relative to the arrows):

Here is the design for the logical circuit controling the fuel distribution.

All logical circuits are defined into the AMP file.

Here the arrows are used to show the control flow, from one component to the next.

· Each bloc corresponds to a FLY object described in the AMP file, except the right valves that belong to the GAS file.

· Each object will have a unic name identified by the (<unId>,ObjectName) tag. This name is used to interconnect objects together.

The components

Multi Position Switch (swst)

This object defines a switch with N positions. Those position are by default exclusive. A message to another component is associated with each position.

In exclusive mode, the current component and the new one are advised of the changing state.

· The current component receives a 0 (false)signal, meaning leaving the position

· The new component receives a 1 (true) signal, meaning entering the position

Target components may be switches or state objects.

<subs> - Main Fuel Selector Switch Set -

swst

<bgno>

<unId> -- unique name of the object

mfSS

<dflt> -- Default Switch Position --

0

<zero> -- Zero based --

<smsg> -- Message Data --

<bgno>

<grou> -Rpvs- Fuel Selector switch (pos0, Right) --

snul

<user>

HARDWARE,SWITCH

<endo>

<smsg> -- Message Data --

<bgno>

<grou> -Fpvs- Fuel Selector switch (pos1, Main) --

fsPM

<user>

HARDWARE,STATE

<endo>

<smsg> -- Message Data --

<bgno>

<grou> -Lpvs- Fuel Selector switch (pos2, Lower) --

fsPL

<user>

HARDWARE,STATE

<endo>

<smsg> -- Message Data --

<bgno>

<grou> -Rpvs- Fuel Selector switch (pos3, Upper) --

fsPU

<user>

HARDWARE,STATE

<endo>

<endo>

Note:

· The component has a unic name (mfSS) described by the <unId> tag.

· By default, the first position is 1. With the <zero> tag, the first position is numbered 0.

· Each <smsg> tag identifies a message sent to a component defined elsewhere in the AMP file, by order consistent with the position assumed by the switch. The (<grou>,ObjectName) tag identify the target component, followed by comlementary parameters.

State component (dpnd, STATE)

<subs> -- Fuel Control --

dpnd

<bgno>

<unId>

fsPM

<hwId> - hardware type -

STATE

<pxy1> -- Rising Edge Message --

<bgno>

<conn>

fsMN

<dtag>

st8t

<type>

INT,1

<endo>

<pxy0> -- Rising Edge Message --

<bgno>

<conn>

fsMN

<dtag>

st8t

<type>

INT,0

<endo>

<endo>

A state component is a FLY object used to define AND/OR gates.

It helds a boolean value (true,false) used in logic. In the exemple above, it is used to memorize one of the selector (msSS) position.

Optionally, it can send message(s) to set another component as in the example above.

· Tag (<pxy0>, Messsage) defines a message to be send on state transition from 1 to 0.

· Tag(<pxy1>,Messsage) defines a message to be sent on state transition from 0 to 1.

The target component is identified by the tag (<conn>,ObjectName).

· (<dtag>,st8t) identifies the st8t attribute that held a logical value in the target component.

· (<type>,INT,0) defines the value to set in the st8t attribute of the target.

Thus the above object set/reset the target object (fsMN), according to the PM position of the fuel selector. The target object (fsMN) is a switch controling the valve of tank Tm.

Simple switch (dpnd,SWITCH)

A simple switch helds a boolean value (0 or 1) corresponding to a normal switch.

<subs> -- Fuel Control --

dpnd

<bgno>

<unId>

fsMN

<hwId> - hardware type -

SWITCH

<endo>

In our design, it is used to control a corresponding valve in the GAS file. It is set/reset by one of the STATE object previously described.

Valve

For completeness, here is the valve description from the GAS file.

<fsub> - Main Valve -

fSub

<bgno>

<unId>

fvMN

<pipe> -- connects to main Tank --

ftMN

<mPol> -- Polling Message --

<bgno>

<conn>

fsMN

<dtag>

st8t

<endo>

<endo>

The valve is coupled to the fsMN switch by the <mPol> message.

Or gate

The last component is the fsON object used elsewhere to indicate when any tank fuel is active.

This is a state object used as an OR gate and taking input from the 3 previous position state objects. When any tank is selected, then the fsON gate is ON. This state may be used to animate a light, or any other purpose.

<subs> -- Fuel Control --

dpnd

<bgno>

<unId>

fsON

<hwId> - hardware type -

STATE

<bool>-- Main is selected

fsPM

<bool>-- Upper selected

fsPU

<bool>-- Lower Selected

fsPL

<_OR_>

<endo>

To define an AND gate, the tag <_AND> is used instead. But then, all input signals must be ON to set the ON state.

1.29. Conclusion

With a few FLY objects, complex logical functions may be designed. To summarize:

· Design logical function on paper

· Implement them in the AMP file

· Test them one by one

· Save a version when the function is OK

We will see in the next chapter some more useful objects that may participate in the design.

More on logic

We now describe more generic object that may contribute to a logical function.

1.30. Condition box

The genM object holds a Boolean value (0 or 1). It also contains a condition to check, generally against a dynamic value. A dynamic value is any value given by a gauge or a FLY subsystem like fuel quantity, altitude, etc. The Boolean value is updated in real time, according to the associated condition. In other word, you can build some functions like:

· Set the true state when fuel quantity is below 6 gallons

· Set the true state when oil pressure reach 110 psi

· Set the true state when external temperature is above 50°

 Virtually all gauges may be associated with the condition.

<subs> -- Flap position--

genM

<bgno>

<unId>

mfP0

<.EQ.> -- When Value is Equal than limit --

<comp> -- Position 1--

0

<mVal> -- Value Message --

<bgno>

<conn>

flap

<user>

HARDWARE,SWITCH

<dtag>

angl

<endo>

<pxy1> -- Flap Position 1--

<bgno>

<grou>

flSW

<user>

HARDWARE,SWITCH

<type>

INT,1

<endo>

<endo>

In the above example, the monitored gauge, identified by the (<mVal>,Message), is the flap indicator. The value monitored is the angle defined by the (<dtag>,angl) flag. When the flap is retracted (angle is equal to 0), then the switch flSW is activated.

· The comparison operator is given as a simple tag: <.EQ.>, <.LT.>, <.LE.>, <.GT.>, <GE.>

· The (<comp>,real) tag is used when a constant is expressed. This operand may be replaced by a (<mVal>,Message) tag when comparing 2 changing values.

· Like a STATE object, the genM object may be used to propagate some signal to another component with the (<pxy0>,Message) or (<pxy1>,Message) tags. It may also appear as an input signal to any logical gate, with the (<bool>,ObjectName) tag.

<subs> -- Fuel Quantity monitor --

genM

<bgno>

<unId>

loMN

<.LT.> -- when value is less than limit --

<comp> -- Limit for 2 gallons--

2.0

<mVal> -- Value Message --

<bgno>

<grou>

ftMN

<dtag>

fqty

<endo>

<endo>

The above example shows a genM object monitoring the fuel quantity in the main tank ftMN. The fuel quantity is held by the 'fqty' attribute of the tank object. The genM object is true when the main tank contains less than 2 gallons.

Monitoring box

Another powerful object, the genI object allows to convert a dynamic value and/or make sums or classical operations on several dynamic values. Dynamic value is any value given by a gauge or FLY subsystem.

<subs> - -

genI

<bgno>

<unId>

TPx1

<mVal> -- Value message --

<bgno>

<conn>

doat

<dtag>

oatC

<endo>

<cvrt> -- Conversion Polynomial --

<bgno>

<coef>

0.0 0.8

<endo>

<timK>

1.0

<endo>

The above example uses a genI object to monitor the external temperature and to convert it to 80% of its value.

· The tag (<mVal>,Message) defines the dynamic value to monitor. Here the 'oatC' attribute of the 'doat' subsystem, giving the external temperature.

· The tag (<cvrt>, COEFFICIENT) describes the conversion performed. With the <coef> tag, up to 9 coefficients may be supplied, separated by a space.

· Polynomial conversion is define as
Y= C1 + C2*X + C3*X^2 +…+C9*X^9
where
Y is the resultant value, X is the monitored value and C1 to C9 are the coefficients.

· The optional (<timK>,SEC) tag may be used to define a time decay into the resultant signal production.

<subs> - Total Fuel Quantity Gauge -

genI

<bgno>

<unId>

smFU

<++++>

<mVal> -- Value Message --

<bgno>

<conn> -- Main Tank --

ftMN

<dtag> -- Fuel in gallons--

fqty

<endo>

<mVal> -- Value Message --

<bgno>

<conn> -- U Left Tank --

ftUL

<dtag> -- Fuel in gallons--

fqty

<endo>

<mVal> -- Value Message --

<bgno>

<conn> -- U right Tank --

ftUR

<dtag> -- Fuel in gallons--

fqty

<endo>

<mVal> -- Value Message --

<bgno>

<conn> -- L Left Tank --

ftLL

<dtag> -- Fuel in gallons--

fqty

<endo>

<mVal> -- Value Message --

<bgno>

<conn> -- L Right Tank --

ftLR

<dtag> -- Fuel in gallons--

fqty

<endo>

<eBus>

main

<timK>

1.0

<load> - circuit requirement -

1.0

<endo>

Here, a genI object is used to sum up (<++++>) the fuel quantity of all 5 tanks.

A visual gauge will be coupled to this object to give the total fuel available.

Light box

<subs> - Subsystem entry -

dpnd

<bgno> - Main tank active-

<unId> - unit id -

lpMN

<hwId> - hardware type -

LIGHT

<eBus> -- main Bus active --

main

<bool>-- Light logic

onMN

<_AND>

<endo>

A light box is generally used for external lights (ELT file) or to animate a panel indicator. It can be designed as an OR/AND gate, depending on the tag.

In the above example, the light in ON when both the main bus and the onMN signal are active.

Below is the OR gate that produce the onMN signal. The flasher object is described in the next section.

<subs> - Subsystem entry -

dpnd

<bgno> - Main Fuel logic-

<unId> - unit id -

onMN

<hwId> - hardware type -

STATE

<flsh> -- Flasher --

fhMN

<bool> --Low fuel signal --

~loMN

<_OR_>

<endo>

To invert the logical value of a signal, the ~operator may be used as in the ~loMN example.

Flasher box

A flasher holds a logical value to produce a pulsing value.

<subs> - Subsystem Entry -

flsh

<bgno> -- Empty tank Flasher --

<unId> - unit id -

fhMN

<time> -- flash rate --

0.5

<bool> -- main tank empty

loMN

<bool>--- And tank selected

fsPM

<_AND>

<endo> -- end --

The flash rate is defined by the (<time>,SEC) tag.

The 3 previous boxes define a circuit for the following function:

· When the main tank is selected and empty, the 'fhMN' flasher is activated. The 'onMN' state box is pulsing and the 'lpMN' light is blinking.

· When the main tank is selected and contains fuel, the 'onMN' is steady active and the 'lpMN' light is alight.

1.31. Fuse Box

A fuse box usually connects several bus or active components together. It can be designed as an OR/AND gate to control the connection. Other than this, there is no dynamic function provided by this object.

<subs> - Subsystem entry -

dpnd

<bgno> - Taxi Lt Circuit Breaker -

<unId> - unit id -

bCab

<hwId> - hardware type -

FUSE

<eBus>

main

<endo>

Bus Object

Bus object defines a bus with OR/AND gate capability. It is used to separate the current flow into several distinct subsystems. No other dynamic function is provided.

<subs> - Subsystem entry -

dpnd

<bgno> - Battery Bus -

<unId> - Unit Id -

baBS

<hwId> - hardware type -

BUS

<fuse> -- battery fuse

batt

<swch> -- Battery switch --

mBat

<_AND> -- both active --

<endo>

1.32. Standard objects

There are a lot of objects in AMP file. Each of them is controlling a small part of the aircraft. I won't provide a list of them, because they are described in the Design notes of Paul Russel written for FLY I. I strongly encourage you to download those documents and refer to them for attribute definition and usage.

Advanced logic

We now illustrate usage of the previous components by looking at the B707 take-off warning system.

The 707 specifications states that this feature should provide an intermittent beep and a warning light whenever the following conditions are true at take-off time:

1. Throttles are above 75% and either one of the following is true

2. Flaps are outside the range [10°,20°]

3. Elevator trims are outside the range [20°,60°]

Following the figure, each rule is implemented.

Rule 1

This rule is implemented by monitoring each throttle with a 'genM' object. When any of them is above 75%, the OR gate 'm4tr' is active.

Rule 2

The 'flap' object is monitored by 2 'genM' objects, each one detecting one extremity of the allowed range. Each signal is activating the 'tkno' OR gate.

Rule 3

Same implementation by monitoring the elevator trim 'etrm' object.

· The OR gate 'tkno' integrates any bad condition stated by rules 2 and 3.

· The AND gate 'tkfl' put the additional condition that the plane must be on ground to activate the alarm. Standard object 'ogrd' is used to detect this situation

Notice that any logical object can have a tag (<fWAV>,FileName.WAV) that allows to play a sound when the component is activated. The flasher object uses this facility.

The switch 'mwsT' activates the alarm, as part of the test procedure.

Note: If you take a look at my B707 AMP file, you will see that the implementation is different. In fact, there is a bug. I just detected this bug by writing this chapter. And you know why? I did not take the time to draw the circuit on paper. Well, shame on me.

The VLD file

Back to an easy matter.

The VLD file contains description of the loads that the plane may carry.

1.33. Unit section

Each load must be described by the 'unit' section.

<unit> - Single Load Entry -

<bgno>

<name> - name of Load -

Pilot

<bPos> - location of load WRT Design CG (fT) -

 -1,2,2.5

<load> - weight at load location (lbs) -

170

<hiLm> - max weight limit (lbs) -

300

<utyp> - UI Type Info

Pilot

<endo>

1.34. Attributes

Here are the attributes.

	TAG
	Value
	Description

	<name>
	text
	Text that will be displayed in the UI menu related to the plane load.

	<bPos>
	X,Y,Z
	Coordinate of the load, relative to the body center.

	<load>
	real
	Actual load at this location. 0 will indicate an empty load at start-up. Using the menu, the load may be adjusted up to the limit specified in the next tag.

	<hiLm>
	real
	Maximum load permitted at this location.

	<utyp>
	type
	Type of load: Pilot, Passenger or Cargo.

External lights

Another easy chapter.

 For each external light, there must be a BULB object into the AMP file.

1.35. Bulb object

<subs> - Subsystem entry -

bulb

<bgno> - Light Bulb -

<LMid> - right nav light -

rnvl

<swch> - circuit dependency (switch) -

navi

<load> - circuit load (amps) -

1.85

<endo>

This object must be in the AMP file. The object name is defined in the <Lmid> tag and will be used in the ELT file for the correspondence. The remaining attributes refer to the circuit dependency controlling this light. Here, the light is controlled with the 'navi' switch.

1.36. Light object

External lights are described in the ELT file.

The 'keyd' value indicates that the light is controlled also through the keyboard.

<lite> ---- Right nav (green) light ----

keyd

rnvl

<bgno> ========== BEGIN OBJECT ==========

<colr>

Green

<_loc> -- Location Relative to model center --

12.0,-0.95,2.54

<polr> -- Range (ft), Pitch (deg), Heading (deg) --

666,0,55

<purp> -- Purpose --

NAV

<endo> ========== END OBJECT ==========

Attributes.

	TAG
	Value
	Description

	<colr>
	Light colour
	Green, White or Red

	<_loc>
	X,Y,Z
	Coordinates relative to the body center.

	<polr>
	R,P,H
	Light parameters

R = Range in feet. 666 is the maximum value

P = Pitch in degree

H= Heading in degree

	<purp>
	Type
	Type of light relative to the keyboard

NAV

STROBE

BEACON

LAND

ICE

1.37. Strobe variation

Pulsing lights are defined with extra tags.

<lite> ---- Bottom strobe nav light ----

keyd

bSTR

<bgno> ========== BEGIN OBJECT ==========

<colr>

White

<_loc> -- Location Relative to model center --

0.0,-0.90,-5.11

<polr> -- Range (ft), Pitch (deg), Heading (deg) --

666,90,0

<cycl> -- on/off time (sec)

1.0

<dcyc> -- duty cycle (Percent of Cycle - ON) --

0.3

<purp> -- Purpose --

STROBE

<endo> ========== END OBJECT ==========

<cycl> defines the total cycle duration in seconds.

<dcyc> defines the ON period in percentage of the total cycle.

END

This concludes the first part of the tutorial. Next to come

-Panel conception

-Flight model

Item

L_LP

Engine 1

Tap

‘tap1’

Valve

‘Llpc’

Pump

‘pmp1’

Valve

‘L2Rn’

Valve

‘Lcfv’

Pump

‘Lbst’

Item

R_LP

Ventral Tank ‘Vtnk’

Left Tank ‘Ltnk’

Root object

BODY

Left Aileron

Left outer Flap

Left inner Flap

Left Leg

Left strut

Left suspension

Left outer wheel

Left inner wheel

Left inner trap

Left outer trap

Animated subsystem

Tests

Text

editor

Pictures

Text

editor

Document

&

Knowledge

Textures

&

animations

Views

Pics

3D

tool

Image

tool

FLY

Engine 2

Tap

‘tap2’

Valve

‘Rlpc’

Pump

‘pmp2’

Valve

‘R2Ln’

Valve

‘Rcfv’

Pump

‘Rbst’

Right Tank ‘Rtnk’

Valve

‘R2Lv’

Valve

‘L2Rv’

Lvtv

Rvtv

PNL: Visual switches or levers to control the logic

AMP:

Systems and logics

Logical

function

Switch

GAS

Fuel system

Valve

Tu1

Tu2

Tl1

Tm

Tl2

Engine

L

O

G

I

C

4 positions

Selector

-Off

-Tup

-Tlp

-Tm

Tu1

Tl1

Tm

Tl2

Tu2

Pump

Engine

Tank

Valves

Collector

Pump

TAP

ENGINE

V

u1

Tank Switch

fsU1

State

fsPU

Tank Switch

fsU2

V

u2

Tank Switch

fsMN

V

m

Tank Switch

fsL1

V

l1

Tank Switch

fsL2

V

l2

State

fsPM

State

fsPL

Multi Position Switch

Position OFF

Position U

Position M

Position L

Visual Gauge

OR State

fsON

Light

tkof

flasher

tkfl

AND

tkfl

Sound

switch

mwsT

OR

m4tr

state

ogrd

OR

tkno

genM

tkr1

genM

tkr2

genM

tkr3

genM

tkr4

genM

mtr2

genM

mtr1

genM

mtr3

genM

mtr4

genM

tkfl

genM

tkfd

genM

tktl

genM

tktd

flaps

Trim

elev

Gas

1 to 4

reverser

1 to 4

B707- Take off warning

